本编内容根据以下例子从源码的角度解读JobScheduler的内幕实现和深度思考
例子,代码如下
objectNetworkWordCount { defmain(args:Array[String]) { if objectNetworkWordCount { defmain(args:Array[String]) { if (args.length< 2) { System.err.println("Usage: NetworkWordCount<hostname> <port>") System.exit(1) } val sparkConf= newSparkConf().setAppName("NetworkWordCount").setMaster("local[2]") val ssc = newStreamingContext(sparkConf,Seconds(1)) val lines= ssc.socketTextStream(args(0), args(1).toInt,StorageLevel.MEMORY_AND_DISK_SER) val words= lines.flatMap(_.split("")) val wordCounts= words.map(x => (x,1)).reduceByKey(_ + _) wordCounts.print() ssc.start() ssc.awaitTermination() } }
在Spark Streaming中,JobScheduler就像Spark Core中的DAGScheduler,JobScheduler根据用户定义的batchDuration(时间间隔,上面代码中的Seconds(1)就是时间间隔)生成job,DStreamGraph只是逻辑级别的,当他遇到时间维度,Job就变成物理级别,从而根据batchDuration不断的提交Job
JobScheduler在StreamingContext实例化的时候被创建,代码如下
private[streaming] val scheduler = new JobScheduler(this)
从StreamingContext的start方法开始看JobScheduler启动,代码如下
def start(): Unit = synchronized { state match { case INITIALIZED => startSite.set(DStream.getCreationSite()) StreamingContext.ACTIVATION_LOCK.synchronized { StreamingContext.assertNoOtherContextIsActive() try { validate() // Start the streaming scheduler in a new thread, so that thread local properties // like call sites and job groups can be reset without affecting those of the // current thread. ThreadUtils.runInNewThread("streaming-start") { sparkContext.setCallSite(startSite.get) sparkContext.clearJobGroup() sparkContext.setLocalProperty(SparkContext.SPARK_JOB_INTERRUPT_ON_CANCEL, "false") // JobScheduler的启动 scheduler.start() } state = StreamingContextState.ACTIVE } catch { case NonFatal(e) => logError("Error starting the context, marking it as stopped", e) scheduler.stop(false) state = StreamingContextState.STOPPED throw e } StreamingContext.setActiveContext(this) } shutdownHookRef = ShutdownHookManager.addShutdownHook( StreamingContext.SHUTDOWN_HOOK_PRIORITY)(stopOnShutdown) // Registering Streaming Metrics at the start of the StreamingContext assert(env.metricsSystem != null) env.metricsSystem.registerSource(streamingSource) uiTab.foreach(_.attach()) logInfo("StreamingContext started") case ACTIVE => logWarning("StreamingContext has already been started") case STOPPED => throw new IllegalStateException("StreamingContext has already been stopped") } }
通过scheduler.start()调用来启动JobScheduler,scheduler.start()放在一个线程池中调用,然后给sparkContext set了一些参数,而这些参数是线程私有的,不会影响全局的SparkContext。ThreadUtils.runInNewThread接收两个参数,以下代码做为第二个参数被传递,也就是ThreadUtils.runInNewThread中的body,这种写法是scala中的柯里化
sparkContext.setCallSite(startSite.get)sparkContext.clearJobGroup()sparkContext.setLocalProperty(SparkContext.SPARK_JOB_INTERRUPT_ON_CANCEL, "false")scheduler.start()
这里启动的线程和应用程序开始定义的线程数量(.setMaster("local[2]"))没有任何关系。local[2]是task运行的并行度,这里的线程只就程序设置的需要而已
接着看JobScheduler的start方法,代码如下
def start(): Unit = synchronized { if (eventLoop != null) return // scheduler has already been started logDebug("Starting JobScheduler") eventLoop = new EventLoop[JobSchedulerEvent]("JobScheduler") { override protected def onReceive(event: JobSchedulerEvent): Unit = processEvent(event) override protected def onError(e: Throwable): Unit = reportError("Error in job scheduler", e) } // 启动JobScheduler的事件循环器 eventLoop.start() // attach rate controllers of input streams to receive batch completion updates for { inputDStream <- ssc.graph.getInputStreams rateController <- inputDStream.rateController } ssc.addStreamingListener(rateController) listenerBus.start(ssc.sparkContext) receiverTracker = new ReceiverTracker(ssc) inputInfoTracker = new InputInfoTracker(ssc) // 启动ReceiverTracker,数据的接收逻辑从这里开始 receiverTracker.start() // 启动JobGenerator,job的生成从这里开始 jobGenerator.start() logInfo("Started JobScheduler") }
首先定义了一个eventLoop ,eventLoop 是一个事件循环器,根据时间间隔不断的回调processEvent(event)。
实例化ReceiverTracker,并调用receiverTracker.start()方法启动ReceiverTracker,ReceiverTracker不断的接收数据的元数据信息,并通过WAL的方式容错,然后将元数据写入到队列中
通过jobGenerator.start()启动JobGenerator,JobGenerator在JobScheduler实例化的时候被创建,代码如下
private val jobGenerator = new JobGenerator(this)
跟踪jobGenerator的start()方法,定义了eventLoop并start(),然后在startFirstTime()中启动timer,代码如下
timer.start(startTime.milliseconds)
timer定时回调发送GenerateJobs消息,代码如下
longTime => eventLoop.post(GenerateJobs(new Time(longTime))), "JobGenerator")
最后调用generateJobs方法,怎么产生jobs看下面的代码
private def generateJobs(time: Time) { // Set the SparkEnv in this thread, so that job generation code can access the environment // Example: BlockRDDs are created in this thread, and it needs to access BlockManager // Update: This is probably redundant after threadlocal stuff in SparkEnv has been removed. SparkEnv.set(ssc.env) Try { jobScheduler.receiverTracker.allocateBlocksToBatch(time) // allocate received blocks to batch graph.generateJobs(time) // generate jobs using allocated block } match { case Success(jobs) => val streamIdToInputInfos = jobScheduler.inputInfoTracker.getInfo(time) // 提交jobSet jobScheduler.submitJobSet(JobSet(time, jobs, streamIdToInputInfos)) case Failure(e) => jobScheduler.reportError("Error generating jobs for time " + time, e) } eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater = false)) }ss BlockManager// Update: This is probably redundant after threadlocal stuff in SparkEnv has been removed.SparkEnv.set(ssc.env)Try { jobScheduler.receiverTracker.allocateBlocksToBatch(time) // allocate received blocks to batch graph.generateJobs(time) // generate jobs using allocated block} match { case Success(jobs) => val streamIdToInputInfos = jobScheduler.inputInfoTracker.getInfo(time) // 提交jobSet jobScheduler.submitJobSet(JobSet(time, jobs, streamIdToInputInfos)) case Failure(e) => jobScheduler.reportError("Error generating jobs for time " + time, e) } eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater = false)) }
graph.generateJobs(time) 生成jobs,我们跟踪进去。
首先看generateJobs 代码如下
def generateJobs(time: Time): Seq[Job] = { logDebug("Generating jobs for time " + time) val jobs = this.synchronized { outputStreams.flatMap { outputStream => val jobOption = outputStream.generateJob(time) jobOption.foreach(_.setCallSite(outputStream.creationSite)) jobOption } } logDebug("Generated " + jobs.length + " jobs for time " + time) jobs }
接着看outputStream.generateJob(time),generateJob是Dstream的方法,跟踪进去看到这里有一个runJob动作,就知道生成的job在哪提交到集群了。
private[streaming] def generateJob(time: Time): Option[Job] = { getOrCompute(time) match { case Some(rdd) => { // 这时将sparkContext.runJob调用包装到了jobFunc函数中, val jobFunc = () => { val emptyFunc = { (iterator: Iterator[T]) => {} } context.sparkContext.runJob(rdd, emptyFunc) } Some(new Job(time, jobFunc)) } case None => None } }
3、回到本文开始的例子,我们跟踪一下代码
wordCounts.print()进入Dstream的print()方法,代码如下
def print(): Unit = ssc.withScope { print(10)}
调用print(10),代码如下
def print(num: Int): Unit = ssc.withScope { def foreachFunc: (RDD[T], Time) => Unit = { (rdd: RDD[T], time: Time) => { val firstNum = rdd.take(num + 1) // scalastyle:off println println("-------------------------------------------") println("Time: " + time) println("-------------------------------------------") firstNum.take(num).foreach(println) if (firstNum.length > num) println("...") println() // scalastyle:on println } } foreachRDD(context.sparkContext.clean(foreachFunc), displayInnerRDDOps = false) }.clean(foreachFunc), displayInnerRDDOps = false)}
定义了foreachFunc方法,然后调用foreachRDD,并传入foreachFunc
foreachRDD代码如下
private def foreachRDD( foreachFunc: (RDD[T], Time) => Unit, displayInnerRDDOps: Boolean): Unit = { new ForEachDStream(this, context.sparkContext.clean(foreachFunc, false), displayInnerRDDOps).register() }
这里实例化了一个ForEachDStream,并传入foreachFunc函数,看ForEachDStream的代码
private[streaming]class ForEachDStream[T: ClassTag] (parent: DStream[T],foreachFunc: (RDD[T], Time) => Unit,displayInnerRDDOps: Boolean )extends DStream[Unit](parent.ssc) { override def dependencies: List[DStream[_]] = List(parent) override def slideDuration: Duration = parent.slideDuration override def compute(validTime: Time): Option[RDD[Unit]] = None override def generateJob(time: Time): Option[Job] = { parent.getOrCompute(time) match { case Some(rdd) => val jobFunc = () => createRDDWithLocalProperties(time, displayInnerRDDOps) { foreachFunc(rdd, time) } Some(new Job(time, jobFunc)) case None => None } } }
ForEachDStream继承了Dstream,并重写了generateJob方法。看到这里回想上面调用outputStream.generateJob(time)方法,是不是流程打通了。
接着回到第4段的代码 jobScheduler.submitJobSet(JobSet(time, jobs, streamIdToInputInfos)),调用 JobScheduler的submitJobSet方法,将生成的jobs封装到JobSet提交,看submitJobSet的代码
def submitJobSet(jobSet: JobSet) { if (jobSet.jobs.isEmpty) { logInfo("No jobs added for time " + jobSet.time) } else { listenerBus.post(StreamingListenerBatchSubmitted(jobSet.toBatchInfo)) //以时间为key来保存jobSet jobSets.put(jobSet.time, jobSet) // 将job封装到JobHandler,提交每一个job,其实jobExecutor.execute是运行一个线程 jobSet.jobs.foreach(job => jobExecutor.execute(new JobHandler(job))) logInfo("Added jobs for time " + jobSet.time) } }
这里实例化了一个JobHandler来封装job,JobHandler其实就是一个实现Runnable接口的类,将JobHandler交给线程池运行,其他就是执行JobHandler的run方法。JobHandler的代码如下
private class JobHandler(job: Job) extends Runnable with Logging { import JobScheduler._ def run() { try { val formattedTime = UIUtils.formatBatchTime(job.time.milliseconds, ssc.graph.batchDuration.milliseconds, showYYYYMMSS = false) val batchUrl = s"/streaming/batch/?id=${job.time.milliseconds}" val batchLinkText = s"[output operation ${job.outputOpId}, batch time ${formattedTime}]" ssc.sc.setJobDescription( s"""Streaming job from <a href="$batchUrl">$batchLinkText</a>""") ssc.sc.setLocalProperty(BATCH_TIME_PROPERTY_KEY, job.time.milliseconds.toString) ssc.sc.setLocalProperty(OUTPUT_OP_ID_PROPERTY_KEY, job.outputOpId.toString) // We need to assign `eventLoop` to a temp variable. Otherwise, because // `JobScheduler.stop(false)` may set `eventLoop` to null when this method is running, then // it's possible that when `post` is called, `eventLoop` happens to null. var _eventLoop = eventLoop if (_eventLoop != null) { _eventLoop.post(JobStarted(job, clock.getTimeMillis())) // Disable checks for existing output directories in jobs launched by the streaming // scheduler, since we may need to write output to an existing directory during checkpoint // recovery; see SPARK-4835 for more details. PairRDDFunctions.disableOutputSpecValidation.withValue(true) { // run方法中包含了job的提交函数,触发sparkContext.runJob,真正的提交job job.run() } _eventLoop = eventLoop if (_eventLoop != null) { _eventLoop.post(JobCompleted(job, clock.getTimeMillis())) } } else { // JobScheduler has been stopped. } } finally { ssc.sc.setLocalProperty(JobScheduler.BATCH_TIME_PROPERTY_KEY, null) ssc.sc.setLocalProperty(JobScheduler.OUTPUT_OP_ID_PROPERTY_KEY, null) } } }
看关键的一行代码 job.run(),run方法代码如下
def run() { _result = Try(func())}
这里的func()函数,就是上面Dtream中print(10)的函数,至此所有的流程就全通了。
回到JobScheduler中看这行代码,定义了提交JobSet线程池的线程数
private val numConcurrentJobs = ssc.conf.getInt("spark.streaming.concurrentJobs", 1)
默认线程数为1,如果应用程序中有多个输出就会生成多个outputDstrem,每个batchDuration就会产生多个job,如果想同时将多个job提交到集群运行就需要开辟多条线程,调整spark.streaming.concurrentJobs参数,根据outputDstrem的数量把线程数调整到合适的值。
作者:海纳百川_spark
链接:https://www.jianshu.com/p/0dcbd4207590