继续浏览精彩内容
慕课网APP
程序员的梦工厂
打开
继续
感谢您的支持,我会继续努力的
赞赏金额会直接到老师账户
将二维码发送给自己后长按识别
微信支付
支付宝支付

用机器学习方法从症状预测疾病

慕姐8265434
关注TA
已关注
手记 1268
粉丝 222
获赞 1065

一、编程环境

Win10
Python3.6
Jupyter Notebook
Graphviz (简介和安装请参考https://www.jianshu.com/p/b559dc689b7f

二、数据源

http://people.dbmi.columbia.edu/~friedma/Projects/DiseaseSymptomKB/index.html
把这个网址里的数据拷贝到csv文件中,并命名为dataset_uncleaned.csv

三、清洗数据

1 将疾病和对应的多个症状放到字典里,key为疾病,value为多个症状。
注意,有些疾病和症状包含了特殊符号’^’,需要先处理成’_’再切割。

import csvfrom collections import defaultdict

disease_list = []def return_list(disease):
    disease_list = []
    match = disease.replace('^','_').split('_')
    ctr = 1
    for group in match:        if ctr%2==0:
            disease_list.append(group)
        ctr = ctr + 1

    return disease_listwith open("Scraped-Data/dataset_uncleaned.csv") as csvfile:
    reader = csv.reader(csvfile)
    disease=""
    weight = 0
    disease_list = []
    dict_wt = {}
    dict_=defaultdict(list)    for row in reader:        if row[0]!="\xc2\xa0" and row[0]!="":
            disease = row[0]
            disease_list = return_list(disease)
            weight = row[1]        if row[2]!="\xc2\xa0" and row[2]!="":
            symptom_list = return_list(row[2])            for d in disease_list:                for s in symptom_list:
                    dict_[d].append(s)
                dict_wt[d] = weight    print (dict_)

2 将疾病-症状-样本数写到dataset_clean.csv中,注意,每个疾病对应着一个样本数和多个症状。

with open("Scraped-Data/dataset_clean.csv","w") as csvfile:
    writer = csv.writer(csvfile)    for key,values in dict_.items():        for v in values:            #key = str.encode(key)
            key = str.encode(key).decode('utf-8')            #.strip()
            #v = v.encode('utf-8').strip()
            #v = str.encode(v)
            writer.writerow([key,v,dict_wt[key]])

注意,此时看到的csv中,每行数据下面有一行空行,这个先不用处理,下面的步骤会处理。

3 给数据表dataset_clean.csv中的每列数据加上列标题

columns = ['Source','Target','Weight']
data = pd.read_csv("Scraped-Data/dataset_clean.csv",names=columns, encoding ="ISO-8859-1")
data.head()
data.to_csv("Scraped-Data/dataset_clean.csv",index=False)

此时,每行下面的空行消失了。

4 标注数据并存到nodetable.csv中
数据分为三列,第一列ID是疾病名称或症状名称;第二列Label是疾病名称或症状名称,与ID完全一样;第三标属性标明了这个ID或Label是病症或症状。

slist = []
dlist = []with open("Scraped-Data/nodetable.csv","w") as csvfile:
    writer = csv.writer(csvfile)    for key,values in dict_.items():        for v in values:            if v not in slist:
                writer.writerow([v,v,"symptom"])
                slist.append(v)        if key not in dlist:
            writer.writerow([key,key,"disease"])
            dlist.append(key)

nt_columns = ['Id','Label','Attribute']
nt_data = pd.read_csv("Scraped-Data/nodetable.csv",names=nt_columns, encoding ="ISO-8859-1",)
nt_data.head()
nt_data.to_csv("Scraped-Data/nodetable.csv",index=False)

四、分析清洗好的数据

data = pd.read_csv("Scraped-Data/dataset_clean.csv", encoding ="ISO-8859-1")
len(data['Source'].unique())
len(data['Target'].unique())
df = pd.DataFrame(data)
df_1 = pd.get_dummies(df.Target)
df_1
df
df_s = df['Source']
df_pivoted = pd.concat([df_s,df_1], axis=1)
df_pivoted.drop_duplicates(keep='first',inplace=True)df_pivotedlen(df_pivoted)cols = df_pivoted.columnsprint(cols)df_pivoted = df_pivoted.groupby('Source').sum()
df_pivoted = df_pivoted.reset_index()df_pivotedlen(df_pivoted)df_pivoted.to_csv("Scraped-Data/df_pivoted.csv")

这此代码主要是分析数据,比如疾病有多少种,症状有多少种。每种疾病对应的症状标记为1,没对应上的症状标记为0,将这些数据合并后存到df_pivoted.csv中。

五、用朴素贝叶斯来训练模型

x = df_pivoted[cols]
y = df_pivoted['Source']import pandas as pdimport seaborn as snsimport matplotlib.pyplot as plt
%matplotlib inlinefrom sklearn.naive_bayes import MultinomialNBfrom sklearn.cross_validation import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.33, random_state=42)
mnb = MultinomialNB()
mnb = mnb.fit(x_train, y_train)
mnb.score(x_test, y_test)

得分为0,意味着没有预测能力。
这是因为,对于149条数据(对应着149种疾病),被预测的那1/3的疾病是没有见过的,所以算法没有办法对没见过的疾病进行预测。

改为用全部的数据进行训练,并用全部的数据进行预测

mnb_tot = MultinomialNB()
mnb_tot = mnb_tot.fit(x, y)
mnb_tot.score(x, y)

得分率为0.8993288590604027

打印出预测不准确的疾病

disease_pred = mnb_tot.predict(x)
disease_real = y.valuesfor i in range(0, len(disease_real)):    if disease_pred[i]!=disease_real[i]:        print ('Pred: {0} Actual:{1}'.format(disease_pred[i].ljust(30), disease_real[i]))

运行结果:

Pred: HIV                            Actual:acquired immuno-deficiency syndromePred: biliary calculus               Actual:cholelithiasisPred: coronary arteriosclerosis      Actual:coronary heart diseasePred: depression mental              Actual:depressive disorderPred: HIV                            Actual:hiv infectionsPred: carcinoma breast               Actual:malignant neoplasm of breastPred: carcinoma of lung              Actual:malignant neoplasm of lungPred: carcinoma prostate             Actual:malignant neoplasm of prostatePred: carcinoma colon                Actual:malignant tumor of colonPred: candidiasis                    Actual:oralcandidiasisPred: effusion pericardial           Actual:pericardial effusion body substancePred: malignant neoplasms            Actual:primary malignant neoplasmPred: sepsis (invertebrate)          Actual:septicemiaPred: sepsis (invertebrate)          Actual:systemic infectionPred: tonic-clonic epilepsy          Actual:tonic-clonic seizures

六、用决策树来训练模型

from sklearn.tree import DecisionTreeClassifier, export_graphviz
dt = DecisionTreeClassifier()
clf_dt=dt.fit(x,y)print ("Acurracy: ", clf_dt.score(x,y))

得到的分数为0.8993288590604027,这与上面用朴素贝叶斯算法得到的结果一样。

下面要可视化决策树的节点分布
1 生成tree.dot

from sklearn import tree 
from sklearn.tree import export_graphviz

export_graphviz(dt, 
                out_file='DOT-files/tree.dot', 
                feature_names=cols)

在工程目录下的DOT-files目录下,可以看到生成了tree.dot文件。

打开cmd终端,进入到tree.dot所在的目录,即DOT-files/中,执行

dot -Tpng tree.dot -o ..\tree.png

会得到tree.png
但是如果tree.dot太大的话,有可能报内存不够的错误:
dot: failure to create cairo surface: out of memory
2 在jupyter notebook中显示tree.png

from IPython.display import Image
Image(filename='tree.png')

七、版权声明

程序来源于https://github.com/Aniruddha-Tapas/Predicting-Diseases-From-Symptoms
笔者在这里只是学习、分析、记录,版权属于原作者。




作者:海天一树X
链接:https://www.jianshu.com/p/882ee4db4e40


打开App,阅读手记
0人推荐
发表评论
随时随地看视频慕课网APP