# 简单的二分类神经网络:单隐藏层# 每个样本有5个features# 隐藏层有10个神经元,一个输出# -*- coding: UTF-8 -*-#!/usr/bin/python3# Env: python3.6import tensorflow as tfimport numpy as npimport os# pathdata_filename = 'data/data_train.txt'size = (10000, 5) tfrecord_path = 'data/test_data.tfrecord'# tfrecord_path2 = 'data/test_data2.tfrecord'# generate data 10000*5, label: 0 or 1# generate tfrecord named test_data.tfrecord.def generate_data(data_filename = data_filename, size=size): if not os.path.exists(data_filename): np.random.seed(9) x_data = np.random.randint(0, 10, size = size) y1_data = np.ones((size[0]//2, 1), int) y2_data = np.zeros((size[0]//2, 1), int) y_data = np.append(y1_data, y2_data) np.random.shuffle(y_data) # stitching together x and y in one file xy_data = str('') for xy_row in range(len(x_data)): x_str = str('') for xy_col in range(len(x_data[0])): if not xy_col == (len(x_data[0])-1): x_str =x_str+str(x_data[xy_row, xy_col])+' ' else: x_str = x_str + str(x_data[xy_row, xy_col]) y_str = str(y_data[xy_row]) xy_data = xy_data+(x_str+'/'+y_str + '\n') #print(xy_data[1]) # write to txt write_txt = open(data_filename, 'w') write_txt.write(xy_data) write_txt.close() return# obtain data from txt# every line of data is just as follow: 1 2 3 4 5/1. train data: 1 2 3 4 5, label: 1def txt_to_tfrecord(txt_filename = data_filename, tfrecord_path = tfrecord_path): # 第一步:生成TFRecord Writer writer = tf.python_io.TFRecordWriter(tfrecord_path) # 第二步:读取TXT数据,并分割出样本数据和标签 file = open(txt_filename) for data_line in file.readlines(): # 每一行 data_line = data_line.strip('\n') # 去掉换行符 sample = [] spls = data_line.split('/', 1)[0]# 样本 for m in spls.split(' '): sample.append(int(m)) label = data_line.split('/', 1)[1]# 标签 label = int(label) print('sample:', sample, 'labels:', label) # 第三步: 建立feature字典,tf.train.Feature()对单一数据编码成feature feature = {'sample': tf.train.Feature(int64_list=tf.train.Int64List(value=sample)), 'label': tf.train.Feature(int64_list=tf.train.Int64List(value=[label]))} # 第四步:可以理解为将内层多个feature的字典数据再编码,集成为features features = tf.train.Features(feature = feature) # 第五步:将features数据封装成特定的协议格式 example = tf.train.Example(features=features) # 第六步:将example数据序列化为字符串 Serialized = example.SerializeToString() # 第七步:将序列化的字符串数据写入协议缓冲区 writer.write(Serialized) # 记得关闭writer和open file的操作 writer.close() file.close() return#txt_to_tfrecord(data_filename, tfrecord_path2)# read tfrecorddef _parse_function(example_proto): dics = { # 这里没用default_value,随后的都是None 'sample': tf.FixedLenFeature([5], tf.int64), # 如果不是标量,一定要在这里说明数组的长度 'label': tf.FixedLenFeature([], tf.int64)} # 把序列化样本和解析字典送入函数里得到解析的样本 parsed_example = tf.parse_single_example(example_proto, dics) parsed_example['sample'] = tf.cast(parsed_example['sample'], tf.float32) parsed_example['label'] = tf.cast(parsed_example['label'], tf.float32) # 返回所有feature return parsed_exampledef read_dataset(tfrecord_path = tfrecord_path): # 声明阅读器 dataset = tf.data.TFRecordDataset(tfrecord_path) # 建立解析函数 new_dataset = dataset.map(_parse_function) # 打乱样本顺序 shuffle_dataset = new_dataset.shuffle(buffer_size=20000) # batch输出 batch_dataset = shuffle_dataset.batch(2) # 建立迭代器 iterator = batch_dataset.make_one_shot_iterator() # 获得下一个样本 next_element = iterator.get_next() x_samples = next_element['sample'] y_labels = next_element['label'] return x_samples, y_labelsdef weight_bias_variable(weight_shape, bias_shape): weight = tf.get_variable('weight', weight_shape, initializer=tf.random_normal_initializer(mean=0, stddev=1)) bias = tf.get_variable('bias', bias_shape, initializer=tf.random_normal_initializer(mean=0, stddev=1)) return weight, bias# neural network:# input layer: 5 features with on sample# one hidden layer: 10 neuron# output: y_out################ fetch data ####################with tf.variable_scope('input_data'): x_samples, y_labels = read_dataset()with tf.variable_scope('hidden_layer1', reuse=tf.AUTO_REUSE): w1, b1 = weight_bias_variable(weight_shape=[5, 10], bias_shape=[10]) y_hidden = tf.nn.relu(tf.matmul(x_samples, w1) + b1) tf.summary.histogram('w1', w1) tf.summary.histogram('b1', b1)with tf.variable_scope('output_layer', reuse=tf.AUTO_REUSE): w2, b2 = weight_bias_variable(weight_shape=[10, 1], bias_shape=[1]) y_out = tf.matmul(y_hidden, w2) + b2 y_out = tf.reshape(y_out, [-1]) tf.summary.histogram('w2', w2) tf.summary.histogram('b2', b2)with tf.variable_scope('loss_function'): # ################ Loss Function # 这里的sigmoid是对y_out的激活函数 loss = tf.nn.sigmoid_cross_entropy_with_logits(logits=y_out, labels=y_labels, name=None) loss_mean = tf.reduce_mean(loss, 0) tf.summary.scalar('loss_mean', loss_mean) ################## BackPropagation # 创建基于梯度下降算法的Optimizer optimizer = tf.train.GradientDescentOptimizer(0.01) # 添加操作节点,用于最小化loss,并更新var_list # 该函数是简单的合并了compute_gradients()与apply_gradients()函数 # 返回为一个优化更新后的var_list train = optimizer.minimize(loss_mean) save_path = 'data/save/b2.txt'with tf.Session() as sess: init = tf.global_variables_initializer() sess.run(init) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) # 建立tensorbord merged = tf.summary.merge_all() writer = tf.summary.FileWriter('data/tfboard', sess.graph) saver = tf.train.Saver() for i in range(2000): sess.run(train) summary = sess.run(merged) writer.add_summary(summary, i) if i % 1000 == 0: print(' ############### step = %d ############ ' %i) print('b2: ', sess.run(b2)) # 用官网介绍的checkpoint方式保存模型 # 创建saver对象,默认max_to_keep=5,保存最近5次的模型。 saver.save(sess, 'data/tmp/model', global_step=1000) # 保存第1000步的模型 # 将变量保存到文件(这里也可以创建字典,将所有变量写成tfrecord文件 # 用sess.run就是将tensor数据转为python数据,然后进行保存 b2_save = sess.run(b2) print('TXT b2 save:', b2_save) np.savetxt(save_path, b2_save) writer.close() coord.request_stop() coord.join(threads)##### checkpoint 恢复模型# 为了区分,我们再建立一个sessionwith tf.Session() as sess: init = tf.global_variables_initializer() sess.run(init) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) # 恢复模型,这是一个 protocol buffer保存了完整的Tensorflow图,即所有变量、操作和集合等。拥有一个.meta last_ckpt = saver.last_checkpoints # 得到保存模型的路径 saver_restore = tf.train.import_meta_graph(os.path.join(last_ckpt[0] + '.meta')) # 用 checkpoint 恢复模型参数 saver_restore.restore(sess, last_ckpt[0]) # method 1 print('methond1:ckpt: ', sess.run(b2)) # 要知道参数名 saver.restore(sess, last_ckpt[0]) # method 2 print('methond2:ckpt: ', sess.run(b2)) # 要知道参数名 # 读取TXT文档恢复参数 # method 3 b2_restore = np.loadtxt(save_path) b2_restore = tf.cast(b2_restore, tf.float32) # numpy默认float64而不是float32,而TF中默认时float32,才能用TF.RESHAPE() b2_restore = tf.reshape(b2_restore, [-1]) # b2是标量,shape为[]。要求tensor时必须给标量扩维度 print('TXT b2_restore:', sess.run(b2.assign(b2_restore))) # 或者 写成: # print('TXT b2_restore:', sess.run(tf.assign(b2, b2_restore))) print(sess.run(b2))
tf.summary()可以利用Tensorboard将网络可视化,在终端输入summary的路径:
$ tensorboard --logdir=/Users/username/PycharmProjects/firsttensorflow/readtf/data/tfboard
终端输出为:TensorBoard 1.9.0 at http://pc-171-10-100-190.cm.vtr.net:6006 (Press CTRL+C to quit)
我们需要在网页中输入:http://localhost:6006
tensorboard默认是在scalars(标量)界面:
这里显示的是损失函数在2000次训练过程中的变化趋势。(因为是随机生成的数据,这里网络性能并没有考虑)
切换到GRAPHS界面,可以看到网络结构:
可以双击每个scope查看里面的tensor flow和operation。
作者:Liu91
链接:https://www.jianshu.com/p/38a39f8b8686