以下文章使用了kafka作为storm的sport数据源,依赖于docker-compose环境,如果自己本机已经有了
zookeeper
与kafka
环境则可以使用自己的环境。
使用教程
docker-compose.yml
version: '2'services: zookeeper: image: wurstmeister/zookeeper ports: - "2181:2181" kafka: image: wurstmeister/kafka ports: - "9092" environment: KAFKA_ADVERTISED_HOST_NAME: 192.168.1.186 KAFKA_ZOOKEEPER_CONNECT: 192.168.1.186:2181 volumes: - /var/run/docker.sock:/var/run/docker.sock
build.gradle
dependencies { compile group: 'org.apache.storm', name: 'storm-core', version: '1.2.2' compile group: 'org.apache.storm', name: 'storm-kafka-client', version: '1.2.2'}
Application.java
public class Application { public static void main(String[] args) throws Exception { KafkaSpoutConfig.Builder<String,String> kafkaBuild = KafkaSpoutConfig.builder("192.168.1.186:32770","test","test1","test2"); kafkaBuild.setFirstPollOffsetStrategy(KafkaSpoutConfig.FirstPollOffsetStrategy.UNCOMMITTED_LATEST); kafkaBuild.setOffsetCommitPeriodMs(100);//设置多长时间向kafka提交一次offset kafkaBuild.setProp(ConsumerConfig.GROUP_ID_CONFIG,"testGroup"); kafkaBuild.setProp(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG,1); kafkaBuild.setProp(ConsumerConfig.HEARTBEAT_INTERVAL_MS_CONFIG,0); KafkaSpoutConfig<String,String> build = kafkaBuild.build(); KafkaSpout<String,String> kafkaSpout = new KafkaSpout<>(build); TopologyBuilder builder = new TopologyBuilder(); builder.setSpout("kafkaSport",kafkaSpout,1); builder.setBolt("print-bolt",new PrintBolt(),1) .shuffleGrouping("kafkaSport"); Config config = new Config(); config.setNumWorkers(1); if(args.length==0){ config.setDebug(true); LocalCluster localCluster = new LocalCluster(); localCluster.submitTopology("test",config,builder.createTopology()); }else{ config.setDebug(false); StormSubmitter.submitTopology("test",config,builder.createTopology()); } } }
PrintBolt.java
public class PrintBolt extends BaseRichBolt { private OutputCollector collector; @Override public void declareOutputFields(OutputFieldsDeclarer declarer) {} @Override public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) { this.collector = collector; } @Override public void execute(Tuple input) { String topic = input.getString(0); long messageOffet = input.getLong(2); String content = input.getString(4); System.out.println(content); collector.ack(input); } }
往kafka发送一个消息
docker exec -ti 4f27fbb6655c bash /opt/kafka/bin/kafka-console-producer.sh --broker-list 192.168.1.186:32770 --topic test
输入消息回车即可看到程序输出
root@localhost /h/lake# docker exec -ti 4f27fbb6655c bash /opt/kafka/bin/kafka-console-producer.sh --broker-list 192.168.1.186:32770 --topic test>hello world. >
输出
...312034 [Thread-20-print-bolt-executor[3 3]] INFO o.a.s.d.executor - Processing received message FOR 3 TUPLE: source: kafkaSport:2, stream: default, id: {-3468855975737070311=-8649143164499739979}, [test, 0, 16, null, hello world.]312034 [Thread-22-__acker-executor[1 1]] INFO o.a.s.d.executor - Processing received message FOR 1 TUPLE: source: kafkaSport:2, stream: __ack_init, id: {}, [-3468855975737070311 -8649143164499739979 2] hello world.312034 [Thread-20-print-bolt-executor[3 3]] INFO o.a.s.d.task - Emitting: print-bolt __ack_ack [-3468855975737070311 -8649143164499739979]312034 [Thread-22-__acker-executor[1 1]] INFO o.a.s.d.executor - BOLT ack TASK: 1 TIME: -1 TUPLE: source: kafkaSport:2, stream: __ack_init, id: {}, [-3468855975737070311 -8649143164499739979 2] ...
作者:dounine
链接:https://www.jianshu.com/p/408b3a4fc92c