继续浏览精彩内容
慕课网APP
程序员的梦工厂
打开
继续
感谢您的支持,我会继续努力的
赞赏金额会直接到老师账户
将二维码发送给自己后长按识别
微信支付
支付宝支付

长文慎入-探索Java并发编程与高并发解决方案

胡子哥哥
关注TA
已关注
手记 348
粉丝 79
获赞 377

所有示例代码,请见/下载于
https://github.com/Wasabi1234/concurrency

5bd32a6900013ae010000604.jpg


5bd32a6a00010fc810000602.jpg

高并发处理的思路及手段


5bd32a6c000177f510000505.jpg


1 基本概念

1.1 并发

同时拥有两个或者多个线程,如果程序在单核处理器上运行多个线程将交替地换入或者换出内存,这些线程是同时“存在"的,每个线程都处于执行过程中的某个状态,如果运行在多核处理器上,此时,程序中的每个线程都将分配到一个处理器核上,因此可以同时运行.

1.2 高并发( High Concurrency)

互联网分布式系统架构设计中必须考虑的因素之一,通常是指,通过设计保证系统能够同时并行处理很多请求.

1.3 区别与联系

  • 并发: 多个线程操作相同的资源,保证线程安全,合理使用资源

  • 高并发:服务能同时处理很多请求,提高程序性能

2 CPU

2.1 CPU 多级缓存

5bd32a6c0001009410000400.jpg

  • 为什么需要CPU cache
    CPU的频率太快了,快到主存跟不上
    如此,在处理器时钟周期内,CPU常常需要等待主存,浪费资源。所以cache的出现,是为了缓解CPU和内存之间速度的不匹配问题(结构:cpu-> cache-> memory ).

  • CPU cache的意义

  1. 时间局部性
    如果某个数据被访问,那么在不久的将来它很可能被再次访问

  2. 空间局部性
    如果某个数据被访问,那么与它相邻的数据很快也可能被访问

2.2 缓存一致性(MESI)

用于保证多个 CPU cache 之间缓存共享数据的一致

  • M-modified被修改
    该缓存行只被缓存在该 CPU 的缓存中,并且是被修改过的,与主存中数据是不一致的,需在未来某个时间点写回主存,该时间是允许在其他CPU 读取主存中相应的内存之前,当这里的值被写入主存之后,该缓存行状态变为 E

  • E-exclusive独享
    缓存行只被缓存在该 CPU 的缓存中,未被修改过,与主存中数据一致
    可在任何时刻当被其他 CPU读取该内存时变成 S 态,被修改时变为 M态

  • S-shared共享
    该缓存行可被多个 CPU 缓存,与主存中数据一致

  • I-invalid无效


    5bd32a6d0001eb3810000656.jpg

  • 乱序执行优化
    处理器为提高运算速度而做出违背代码原有顺序的优化

并发的优势与风险

5bd32a6f0001504910000678.jpg

3 项目准备

3.1 项目初始化

5bd32a700001f55005740422.jpg

自定义4个基本注解


5bd32a710001f6ab10000441.jpg

随手写个测试类


5bd32a720001541b10000112.jpg

运行正常

3.2 并发模拟-Jmeter压测

5bd32a72000113f010000343.jpg


1000


350

添加"查看结果数"和"图形结果"监听器


1000

log view 下当前日志信息


1000

图形结果

3.3 并发模拟-代码

CountDownLatch

1000

可阻塞线程,并保证当满足特定条件时可继续执行

Semaphore(信号量)

1000

可阻塞线程,控制同一时间段内的并发量


以上二者通常和线程池搭配

下面开始做并发模拟

package com.mmall.concurrency;import com.mmall.concurrency.annoations.NotThreadSafe;import lombok.extern.slf4j.Slf4j;import java.util.concurrent.CountDownLatch;import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;import java.util.concurrent.Semaphore;/**
 * @author shishusheng
 * @date 18/4/1
 */@Slf4j@NotThreadSafepublic class ConcurrencyTest {    /**
     * 请求总数
     */
    public static int clientTotal = 5000;    /**
     * 同时并发执行的线程数
     */
    public static int threadTotal = 200;    public static int count = 0;    public static void main(String[] args) throws Exception {        //定义线程池
        ExecutorService executorService = Executors.newCachedThreadPool();        //定义信号量,给出允许并发的线程数目
        final Semaphore semaphore = new Semaphore(threadTotal);        //统计计数结果
        final CountDownLatch countDownLatch = new CountDownLatch(clientTotal);        //将请求放入线程池
        for (int i = 0; i < clientTotal ; i++) {
            executorService.execute(() -> {                try {                    //信号量的获取
                    semaphore.acquire();
                    add();                    //释放
                    semaphore.release();
                } catch (Exception e) {
                    log.error("exception", e);
                }
                countDownLatch.countDown();
            });
        }
        countDownLatch.await();        //关闭线程池
        executorService.shutdown();
        log.info("count:{}", count);
    }    /**
     * 统计方法
     */
    private static void add() {
        count++;
    }
}

运行发现结果随机,所以非线程安全

4线程安全性

4.1  线程安全性

当多个线程访问某个类时,不管运行时环境采用何种调度方式或者这些进程将如何交替执行,并且在主调代码中不需要任何额外的同步或协同,这个类都能表现出正确的行为,那么就称这个类是线程安全的

4.2 原子性

4.2.1 Atomic 包

  • AtomicXXX:CAS,Unsafe.compareAndSwapInt
    提供了互斥访问,同一时刻只能有一个线程来对它进行操作

package com.mmall.concurrency.example.atomic;import com.mmall.concurrency.annoations.ThreadSafe;import lombok.extern.slf4j.Slf4j;import java.util.concurrent.CountDownLatch;import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;import java.util.concurrent.Semaphore;import java.util.concurrent.atomic.AtomicLong;/**
 * @author shishusheng
 */@Slf4j
@ThreadSafepublic class AtomicExample2 {

    /**
     * 请求总数
     */
    public static int clientTotal = 5000;    /**
     * 同时并发执行的线程数
     */
    public static int threadTotal = 200;    /**
     * 工作内存
     */
    public static AtomicLong count = new AtomicLong(0);    public static void main(String[] args) throws Exception {
        ExecutorService executorService = Executors.newCachedThreadPool();
        final Semaphore semaphore = new Semaphore(threadTotal);
        final CountDownLatch countDownLatch = new CountDownLatch(clientTotal);        for (int i = 0; i < clientTotal ; i++) {
            executorService.execute(() -> {                try {
                    System.out.println();
                    semaphore.acquire();
                    add();
                    semaphore.release();
                } catch (Exception e) {                    log.error("exception", e);
                }
                countDownLatch.countDown();
            });
        }
        countDownLatch.await();
        executorService.shutdown();        //主内存
        log.info("count:{}", count.get());
    }    
    private static void add() {
        count.incrementAndGet();        // count.getAndIncrement();
    }
}
package com.mmall.concurrency.example.atomic;import com.mmall.concurrency.annoations.ThreadSafe;import lombok.extern.slf4j.Slf4j;import java.util.concurrent.atomic.AtomicReference;/**
 * @author shishusheng
 * @date 18/4/3
 */@Slf4j@ThreadSafepublic class AtomicExample4 {    private static AtomicReference<Integer> count = new AtomicReference<>(0);    public static void main(String[] args) {        // 2
        count.compareAndSet(0, 2);        // no
        count.compareAndSet(0, 1);        // no
        count.compareAndSet(1, 3);        // 4
        count.compareAndSet(2, 4);        // no
        count.compareAndSet(3, 5); 
        log.info("count:{}", count.get());
    }
}

1000

输出结果

  • AtomicReference,AtomicReferenceFieldUpdater


    1000

  • AtomicBoolean


    1000

  • AtomicStampReference : CAS的 ABA 问题

4.2.2 锁

synchronized:依赖 JVM

  • 修饰代码块:大括号括起来的代码,作用于调用的对象

  • 修饰方法: 整个方法,作用于调用的对象


    1000

  • 修饰静态方法:整个静态方法,作用于所有对象


    1000

package com.mmall.concurrency.example.count;import com.mmall.concurrency.annoations.ThreadSafe;import lombok.extern.slf4j.Slf4j;import java.util.concurrent.CountDownLatch;import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;import java.util.concurrent.Semaphore;/**
 * @author shishusheng
 */@Slf4j@ThreadSafepublic class CountExample3 {    /**
     * 请求总数
     */
    public static int clientTotal = 5000;    /**
     * 同时并发执行的线程数
     */
    public static int threadTotal = 200;    public static int count = 0;    public static void main(String[] args) throws Exception {
        ExecutorService executorService = Executors.newCachedThreadPool();        final Semaphore semaphore = new Semaphore(threadTotal);        final CountDownLatch countDownLatch = new CountDownLatch(clientTotal);        for (int i = 0; i < clientTotal ; i++) {
            executorService.execute(() -> {                try {
                    semaphore.acquire();
                    add();
                    semaphore.release();
                } catch (Exception e) {
                    log.error("exception", e);
                }
                countDownLatch.countDown();
            });
        }
        countDownLatch.await();
        executorService.shutdown();
        log.info("count:{}", count);
    }    private synchronized static void add() {
        count++;
    }
}

synchronized 修正计数类方法

  • 修饰类:括号括起来的部分,作用于所有对象
    子类继承父类的被 synchronized 修饰方法时,是没有 synchronized 修饰的!!!

Lock: 依赖特殊的 CPU 指令,代码实现

4.2.3  对比

  • synchronized: 不可中断锁,适合竞争不激烈,可读性好

  • Lock: 可中断锁,多样化同步,竞争激烈时能维持常态

  • Atomic: 竞争激烈时能维持常态,比Lock性能好; 只能同步一
    个值

4.3 可见性

一个线程对主内存的修改可以及时的被其他线程观察到

4.3.1 导致共享变量在线程间不可见的原因

  • 线程交叉执行

  • 重排序结合线程交叉执行

  • 共享变量更新后的值没有在工作内存与主存间及时更新

4.3.2 可见性之synchronized

JMM关于synchronized的规定

  • 线程解锁前,必须把共享变量的最新值刷新到主内存

  • 线程加锁时,将清空工作内存中共享变量的值,从而使
    用共享变量时需要从主内存中重新读取最新的值(加锁与解锁是同一把锁)

4.3.3 可见性之volatile

通过加入内存屏障和禁止重排序优化来实现

  • 对volatile变量写操作时,会在写操作后加入一条store
    屏障指令,将本地内存中的共享变量值刷新到主内存

  • 对volatile变量读操作时,会在读操作前加入一条load
    屏障指令,从主内存中读取共享变量


    1000

    volatile 写


    1000

    volatile 读


    1000

    计数类之 volatile 版,非线程安全的

  • volatile使用

volatile boolean inited = false;//线程1:context = loadContext();
inited= true;// 线程2:while( !inited ){
    sleep();
}
doSomethingWithConfig(context)

4.4 有序性

一个线程观察其他线程中的指令执行顺序,由于指令重排序的存在,该观察结果一般杂乱无序

JMM允许编译器和处理器对指令进行重排序,但是重排序过程不会影响到单线程程序的执行,却会影响到多线程并发执行的正确性

4.4.1 happens-before 规则

5发布对象

1000


1000

发布对象


1000

对象逸出

5.1 安全发布对象

1000


1000

非线程安全的懒汉模式


1000

饿汉模式


1000

线程安全的懒汉模式

package com.mmall.concurrency.example.singleton;import com.mmall.concurrency.annoations.NotThreadSafe;/**
 * 懒汉模式 -》 双重同步锁单例模式
 * 单例实例在第一次使用时进行创建
 * @author shishusheng
 */@NotThreadSafepublic class SingletonExample4 {    /**
     * 私有构造函数
     */
    private SingletonExample4() {

    }    // 1、memory = allocate() 分配对象的内存空间
    // 2、ctorInstance() 初始化对象
    // 3、instance = memory 设置instance指向刚分配的内存

    // JVM和cpu优化,发生了指令重排

    // 1、memory = allocate() 分配对象的内存空间
    // 3、instance = memory 设置instance指向刚分配的内存
    // 2、ctorInstance() 初始化对象

    /**
     * 单例对象
     */
    private static SingletonExample4 instance = null;    /**
     * 静态的工厂方法
     *
     * @return
     */
    public static SingletonExample4 getInstance() {        // 双重检测机制 // B
        if (instance == null) {        
            // 同步锁
            synchronized (SingletonExample4.class) { 
                if (instance == null) {                    // A - 3
                    instance = new SingletonExample4(); 
                }
            }
        }        return instance;
    }
}

1000


1000

7 AQS

7.1 介绍

1000

数据结构

  • 使用Node实现FIFO队列,可以用于构建锁或者其他同步装置的基础框架

  • 利用了一个int类型表示状态

  • 使用方法是继承

  • 子类通过继承并通过实现它的方法管理其状态{acquire 和release} 的方法操纵状态

  • 可以同时实现排它锁和共享锁模式(独占、共享)
    同步组件

CountDownLatch

package com.mmall.concurrency.example.aqs;import lombok.extern.slf4j.Slf4j;import java.util.concurrent.CountDownLatch;import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;/**
 * @author shishusheng
 */@Slf4jpublic class CountDownLatchExample1 {    private final static int threadCount = 200;    public static void main(String[] args) throws Exception {

        ExecutorService exec = Executors.newCachedThreadPool();        final CountDownLatch countDownLatch = new CountDownLatch(threadCount);        for (int i = 0; i < threadCount; i++) {            final int threadNum = i;
            exec.execute(() -> {                try {
                    test(threadNum);
                } catch (Exception e) {
                    log.error("exception", e);
                } finally {
                    countDownLatch.countDown();
                }
            });
        }
        countDownLatch.await();
        log.info("finish");
        exec.shutdown();
    }    private static void test(int threadNum) throws Exception {
        Thread.sleep(100);
        log.info("{}", threadNum);
        Thread.sleep(100);
    }
}
package com.mmall.concurrency.example.aqs;import lombok.extern.slf4j.Slf4j;import java.util.concurrent.CountDownLatch;import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;import java.util.concurrent.TimeUnit;/**
* 指定时间内处理任务
* 
* @author shishusheng 
* 
*/@Slf4jpublic class CountDownLatchExample2 {   private final static int threadCount = 200;   public static void main(String[] args) throws Exception {

       ExecutorService exec = Executors.newCachedThreadPool();       final CountDownLatch countDownLatch = new CountDownLatch(threadCount);       for (int i = 0; i < threadCount; i++) {           final int threadNum = i;
           exec.execute(() -> {               try {
                   test(threadNum);
               } catch (Exception e) {
                   log.error("exception", e);
               } finally {
                   countDownLatch.countDown();
               }
           });
       }
       countDownLatch.await(10, TimeUnit.MILLISECONDS);
       log.info("finish");
       exec.shutdown();
   }   private static void test(int threadNum) throws Exception {
       Thread.sleep(100);
       log.info("{}", threadNum);
   }
}

Semaphore用法

1000


1000


1000

CycliBarrier

package com.mmall.concurrency.example.aqs;import lombok.extern.slf4j.Slf4j;import java.util.concurrent.CyclicBarrier;import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;/**
 * @author shishusheng
 */@Slf4jpublic class CyclicBarrierExample1 {    private static CyclicBarrier barrier = new CyclicBarrier(5);    public static void main(String[] args) throws Exception {

        ExecutorService executor = Executors.newCachedThreadPool();        for (int i = 0; i < 10; i++) {            final int threadNum = i;
            Thread.sleep(1000);
            executor.execute(() -> {                try {
                    race(threadNum);
                } catch (Exception e) {
                    log.error("exception", e);
                }
            });
        }
        executor.shutdown();
    }    private static void race(int threadNum) throws Exception {
        Thread.sleep(1000);
        log.info("{} is ready", threadNum);
        barrier.await();
        log.info("{} continue", threadNum);
    }
}

1000

package com.mmall.concurrency.example.aqs;import lombok.extern.slf4j.Slf4j;import java.util.concurrent.CyclicBarrier;import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;import java.util.concurrent.TimeUnit;/**
 * @author shishusheng
 */@Slf4jpublic class CyclicBarrierExample2 {

    private static CyclicBarrier barrier = new CyclicBarrier(5);    public static void main(String[] args) throws Exception {

        ExecutorService executor = Executors.newCachedThreadPool();        for (int i = 0; i < 10; i++) {
            final int threadNum = i;
            Thread.sleep(1000);
            executor.execute(() -> {                try {
                    race(threadNum);
                } catch (Exception e) {                    log.error("exception", e);
                }
            });
        }
        executor.shutdown();
    }    private static void race(int threadNum) throws Exception {
        Thread.sleep(1000);        log.info("{} is ready", threadNum);        try {
            barrier.await(2000, TimeUnit.MILLISECONDS);
        } catch (Exception e) {            log.warn("BarrierException", e);
        }        log.info("{} continue", threadNum);
    }
}

1000

await 超时导致程序抛异常

package com.mmall.concurrency.example.aqs;import lombok.extern.slf4j.Slf4j;import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;import java.util.concurrent.Semaphore;/**
 * @author shishusheng
 */@Slf4jpublic class SemaphoreExample3 {    private final static int threadCount = 20;    public static void main(String[] args) throws Exception {

        ExecutorService exec = Executors.newCachedThreadPool();        final Semaphore semaphore = new Semaphore(3);        for (int i = 0; i < threadCount; i++) {            final int threadNum = i;
            exec.execute(() -> {                try {                    // 尝试获取一个许可
                    if (semaphore.tryAcquire()) {
                        test(threadNum);                        // 释放一个许可
                        semaphore.release();
                    }
                } catch (Exception e) {
                    log.error("exception", e);
                }
            });
        }
        exec.shutdown();
    }    private static void test(int threadNum) throws Exception {
        log.info("{}", threadNum);
        Thread.sleep(1000);
    }


}

9 线程池

9.1 newCachedThreadPool

1000

9.2 newFixedThreadPool

1000

9.3 newSingleThreadExecutor

看出是顺序执行的


1000

9.4 newScheduledThreadPool

1000


1000

10 死锁

1000


1000



作者:芥末无疆sss
链接:https://www.jianshu.com/p/8a3c6ac1e01e
來源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。


打开App,阅读手记
1人推荐
发表评论
随时随地看视频慕课网APP