简介
Spark SQL提供了两种方式用于将RDD转换为Dataset。
使用反射机制推断RDD的数据结构
当spark应用可以推断RDD数据结构时,可使用这种方式。这种基于反射的方法可以使代码更简洁有效。
通过编程接口构造一个数据结构,然后映射到RDD上
当spark应用无法推断RDD数据结构时,可使用这种方式。
反射方式
scala
// For implicit conversions from RDDs to DataFramesimport spark.implicits._// Create an RDD of Person objects from a text file, convert it to a Dataframeval peopleDF = spark.sparkContext .textFile("examples/src/main/resources/people.txt") .map(_.split(",")) .map(attributes => Person(attributes(0), attributes(1).trim.toInt)) .toDF()// Register the DataFrame as a temporary viewpeopleDF.createOrReplaceTempView("people")// SQL statements can be run by using the sql methods provided by Sparkval teenagersDF = spark.sql("SELECT name, age FROM people WHERE age BETWEEN 13 AND 19")// The columns of a row in the result can be accessed by field indexteenagersDF.map(teenager => "Name: " + teenager(0)).show()// +------------+// | value|// +------------+// |Name: Justin|// +------------+// or by field nameteenagersDF.map(teenager => "Name: " + teenager.getAs[String]("name")).show()// +------------+// | value|// +------------+// |Name: Justin|// +------------+// No pre-defined encoders for Dataset[Map[K,V]], define explicitlyimplicit val mapEncoder = org.apache.spark.sql.Encoders.kryo[Map[String, Any]]// Primitive types and case classes can be also defined as// implicit val stringIntMapEncoder: Encoder[Map[String, Any]] = ExpressionEncoder()// row.getValuesMap[T] retrieves multiple columns at once into a Map[String, T]teenagersDF.map(teenager => teenager.getValuesMap[Any](List("name", "age"))).collect()// Array(Map("name" -> "Justin", "age" -> 19))
java
import org.apache.spark.api.java.JavaRDD;import org.apache.spark.api.java.function.Function;import org.apache.spark.api.java.function.MapFunction;import org.apache.spark.sql.Dataset;import org.apache.spark.sql.Row;import org.apache.spark.sql.Encoder;import org.apache.spark.sql.Encoders;// Create an RDD of Person objects from a text fileJavaRDD<Person> peopleRDD = spark.read() .textFile("examples/src/main/resources/people.txt") .javaRDD() .map(line -> { String[] parts = line.split(","); Person person = new Person(); person.setName(parts[0]); person.setAge(Integer.parseInt(parts[1].trim())); return person; });// Apply a schema to an RDD of JavaBeans to get a DataFrameDataset<Row> peopleDF = spark.createDataFrame(peopleRDD, Person.class);// Register the DataFrame as a temporary viewpeopleDF.createOrReplaceTempView("people");// SQL statements can be run by using the sql methods provided by sparkDataset<Row> teenagersDF = spark.sql("SELECT name FROM people WHERE age BETWEEN 13 AND 19");// The columns of a row in the result can be accessed by field indexEncoder<String> stringEncoder = Encoders.STRING(); Dataset<String> teenagerNamesByIndexDF = teenagersDF.map( (MapFunction<Row, String>) row -> "Name: " + row.getString(0), stringEncoder); teenagerNamesByIndexDF.show();// +------------+// | value|// +------------+// |Name: Justin|// +------------+// or by field nameDataset<String> teenagerNamesByFieldDF = teenagersDF.map( (MapFunction<Row, String>) row -> "Name: " + row.<String>getAs("name"), stringEncoder); teenagerNamesByFieldDF.show();// +------------+// | value|// +------------+// |Name: Justin|// +------------+
python
from pyspark.sql import Row sc = spark.sparkContext# Load a text file and convert each line to a Row.lines = sc.textFile("examples/src/main/resources/people.txt") parts = lines.map(lambda l: l.split(",")) people = parts.map(lambda p: Row(name=p[0], age=int(p[1])))# Infer the schema, and register the DataFrame as a table.schemaPeople = spark.createDataFrame(people) schemaPeople.createOrReplaceTempView("people")# SQL can be run over DataFrames that have been registered as a table.teenagers = spark.sql("SELECT name FROM people WHERE age >= 13 AND age <= 19")# The results of SQL queries are Dataframe objects.# rdd returns the content as an :class:`pyspark.RDD` of :class:`Row`.teenNames = teenagers.rdd.map(lambda p: "Name: " + p.name).collect()for name in teenNames: print(name)# Name: Justin
编程方式
scala
import org.apache.spark.sql.types._// Create an RDDval peopleRDD = spark.sparkContext.textFile("examples/src/main/resources/people.txt")// The schema is encoded in a stringval schemaString = "name age"// Generate the schema based on the string of schemaval fields = schemaString.split(" ") .map(fieldName => StructField(fieldName, StringType, nullable = true)) val schema = StructType(fields)// Convert records of the RDD (people) to Rowsval rowRDD = peopleRDD .map(_.split(",")) .map(attributes => Row(attributes(0), attributes(1).trim))// Apply the schema to the RDDval peopleDF = spark.createDataFrame(rowRDD, schema)// Creates a temporary view using the DataFramepeopleDF.createOrReplaceTempView("people")// SQL can be run over a temporary view created using DataFramesval results = spark.sql("SELECT name FROM people")// The results of SQL queries are DataFrames and support all the normal RDD operations// The columns of a row in the result can be accessed by field index or by field nameresults.map(attributes => "Name: " + attributes(0)).show()// +-------------+// | value|// +-------------+// |Name: Michael|// | Name: Andy|// | Name: Justin|// +-------------+
java
import java.util.ArrayList;import java.util.List;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.api.java.function.Function;import org.apache.spark.sql.Dataset;import org.apache.spark.sql.Row;import org.apache.spark.sql.types.DataTypes;import org.apache.spark.sql.types.StructField;import org.apache.spark.sql.types.StructType;// Create an RDDJavaRDD<String> peopleRDD = spark.sparkContext() .textFile("examples/src/main/resources/people.txt", 1) .toJavaRDD();// The schema is encoded in a stringString schemaString = "name age";// Generate the schema based on the string of schemaList<StructField> fields = new ArrayList<>();for (String fieldName : schemaString.split(" ")) { StructField field = DataTypes.createStructField(fieldName, DataTypes.StringType, true); fields.add(field); } StructType schema = DataTypes.createStructType(fields);// Convert records of the RDD (people) to RowsJavaRDD<Row> rowRDD = peopleRDD.map((Function<String, Row>) record -> { String[] attributes = record.split(","); return RowFactory.create(attributes[0], attributes[1].trim()); });// Apply the schema to the RDDDataset<Row> peopleDataFrame = spark.createDataFrame(rowRDD, schema);// Creates a temporary view using the DataFramepeopleDataFrame.createOrReplaceTempView("people");// SQL can be run over a temporary view created using DataFramesDataset<Row> results = spark.sql("SELECT name FROM people");// The results of SQL queries are DataFrames and support all the normal RDD operations// The columns of a row in the result can be accessed by field index or by field nameDataset<String> namesDS = results.map( (MapFunction<Row, String>) row -> "Name: " + row.getString(0), Encoders.STRING()); namesDS.show();// +-------------+// | value|// +-------------+// |Name: Michael|// | Name: Andy|// | Name: Justin|// +-------------+
python
# Import data typesfrom pyspark.sql.types import * sc = spark.sparkContext# Load a text file and convert each line to a Row.lines = sc.textFile("examples/src/main/resources/people.txt") parts = lines.map(lambda l: l.split(","))# Each line is converted to a tuple.people = parts.map(lambda p: (p[0], p[1].strip()))# The schema is encoded in a string.schemaString = "name age"fields = [StructField(field_name, StringType(), True) for field_name in schemaString.split()] schema = StructType(fields)# Apply the schema to the RDD.schemaPeople = spark.createDataFrame(people, schema)# Creates a temporary view using the DataFrameschemaPeople.createOrReplaceTempView("people")# SQL can be run over DataFrames that have been registered as a table.results = spark.sql("SELECT name FROM people") results.show()# +-------+# | name|# +-------+# |Michael|# | Andy|# | Justin|# +-------+
作者:java大数据编程
链接:https://www.jianshu.com/p/e9e25cc07b3c