感谢您的支持,我会继续努力的
赞赏金额会直接到老师账户
将二维码发送给自己后长按识别
微信支付
支付宝支付

数据处理第一节:选取列的基本到高级方法

慕码人8056858
关注TA
已关注
手记 1283
粉丝 351
获赞 1323

博客原文:https://suzan.rbind.io/2018/01/dplyr-tutorial-1/
作者:Suzan Baert

注意:所有代码都将作为管道的一部分呈现,即使它们中的任何一个都不是完整的管道。 在某些情况下,我添加了一个glimpse()语句,允许您查看输出tibble中选择的列,而不必每次都打印所有数据。

数据集

library(tidyverse)#built-in R dataset glimpse(msleep)## Observations: 83## Variables: 11## $ name         <chr> "Cheetah", "Owl monkey", "Mountain beaver", "Grea...
## $ genus        <chr> "Acinonyx", "Aotus", "Aplodontia", "Blarina", "Bo...## $ vore         <chr> "carni", "omni", "herbi", "omni", "herbi", "herbi...
## $ order        <chr> "Carnivora", "Primates", "Rodentia", "Soricomorph...## $ conservation <chr> "lc", NA, "nt", "lc", "domesticated", NA, "vu", N...## $ sleep_total  <dbl> 12.1, 17.0, 14.4, 14.9, 4.0, 14.4, 8.7, 7.0, 10.1...## $ sleep_rem    <dbl> NA, 1.8, 2.4, 2.3, 0.7, 2.2, 1.4, NA, 2.9, NA, 0....## $ sleep_cycle  <dbl> NA, NA, NA, 0.1333333, 0.6666667, 0.7666667, 0.38...## $ awake        <dbl> 11.9, 7.0, 9.6, 9.1, 20.0, 9.6, 15.3, 17.0, 13.9,...## $ brainwt      <dbl> NA, 0.01550, NA, 0.00029, 0.42300, NA, NA, NA, 0....## $ bodywt       <dbl> 50.000, 0.480, 1.350, 0.019, 600.000, 3.850, 20.4...

选取列

选取列:基础部分

如果目的是选择其中几列,只需在select语句中添加列的名称即可。 添加它们的顺序将决定它们在output中的显示顺序。

msleep %>%
  select(name, genus, sleep_total, awake) %>%
  glimpse()## Observations: 83## Variables: 4## $ name        <chr> "Cheetah", "Owl monkey", "Mountain beaver", "Great...
## $ genus       <chr> "Acinonyx", "Aotus", "Aplodontia", "Blarina", "Bos...## $ sleep_total <dbl> 12.1, 17.0, 14.4, 14.9, 4.0, 14.4, 8.7, 7.0, 10.1,...## $ awake       <dbl> 11.9, 7.0, 9.6, 9.1, 20.0, 9.6, 15.3, 17.0, 13.9, ...

如果你想添加很多列,可以通过使用chunks提高工作效率,取消选择甚至取消选择列并重新添加它来进行选择 直接。

同时可以请使用start_col:end_col语法选择某些列:

msleep %>%
  select(name:order, sleep_total:sleep_cycle) %>%
  glimpse## Observations: 83## Variables: 7## $ name        <chr> "Cheetah", "Owl monkey", "Mountain beaver", "Great...
## $ genus       <chr> "Acinonyx", "Aotus", "Aplodontia", "Blarina", "Bos...## $ vore        <chr> "carni", "omni", "herbi", "omni", "herbi", "herbi"...## $ order       <chr> "Carnivora", "Primates", "Rodentia", "Soricomorpha...
## $ sleep_total <dbl> 12.1, 17.0, 14.4, 14.9, 4.0, 14.4, 8.7, 7.0, 10.1,...
## $ sleep_rem   <dbl> NA, 1.8, 2.4, 2.3, 0.7, 2.2, 1.4, NA, 2.9, NA, 0.6...
## $ sleep_cycle <dbl> NA, NA, NA, 0.1333333, 0.6666667, 0.7666667, 0.383...

另一种方法是通过在列名称前添加减号来取消选择列。 还可以通过此操作取消选择某些列。

msleep %>% 
  select(-conservation, -(sleep_total:awake)) %>%
  glimpse## Observations: 83## Variables: 6## $ name    <chr> "Cheetah", "Owl monkey", "Mountain beaver", "Greater s...
## $ genus   <chr> "Acinonyx", "Aotus", "Aplodontia", "Blarina", "Bos", "...## $ vore    <chr> "carni", "omni", "herbi", "omni", "herbi", "herbi", "c...
## $ order   <chr> "Carnivora", "Primates", "Rodentia", "Soricomorpha", "...## $ brainwt <dbl> NA, 0.01550, NA, 0.00029, 0.42300, NA, NA, NA, 0.07000...## $ bodywt  <dbl> 50.000, 0.480, 1.350, 0.019, 600.000, 3.850, 20.490, 0...

甚至可以取消选择整个chunks列,然后重新添加其中某列。下面的示例代码取消选择从name到awake的所有列,但重新添加列'conservation',即使它是取消选择的列的一部分。 但这只适用于在同一select()语句中。

msleep %>%
  select(-(name:awake), conservation) %>%
  glimpse## Observations: 83## Variables: 3## $ brainwt      <dbl> NA, 0.01550, NA, 0.00029, 0.42300, NA, NA, NA, 0....## $ bodywt       <dbl> 50.000, 0.480, 1.350, 0.019, 600.000, 3.850, 20.4...## $ conservation <chr> "lc", NA, "nt", "lc", "domesticated", NA, "vu", N...

根据列名特点选择列

如果你有很多具有类似列名的列,你可以通过在select语句中添加starts_with()ends_with()contains()来使用匹配。

msleep %>%
  select(name, starts_with("sleep")) %>%
  glimpse## Observations: 83## Variables: 4## $ name        <chr> "Cheetah", "Owl monkey", "Mountain beaver", "Great...## $ sleep_total <dbl> 12.1, 17.0, 14.4, 14.9, 4.0, 14.4, 8.7, 7.0, 10.1,...## $ sleep_rem   <dbl> NA, 1.8, 2.4, 2.3, 0.7, 2.2, 1.4, NA, 2.9, NA, 0.6...## $ sleep_cycle <dbl> NA, NA, NA, 0.1333333, 0.6666667, 0.7666667, 0.383...msleep %>%
  select(contains("eep"), ends_with("wt")) %>%
  glimpse## Observations: 83## Variables: 5## $ sleep_total <dbl> 12.1, 17.0, 14.4, 14.9, 4.0, 14.4, 8.7, 7.0, 10.1,...## $ sleep_rem   <dbl> NA, 1.8, 2.4, 2.3, 0.7, 2.2, 1.4, NA, 2.9, NA, 0.6...## $ sleep_cycle <dbl> NA, NA, NA, 0.1333333, 0.6666667, 0.7666667, 0.383...## $ brainwt     <dbl> NA, 0.01550, NA, 0.00029, 0.42300, NA, NA, NA, 0.0...## $ bodywt      <dbl> 50.000, 0.480, 1.350, 0.019, 600.000, 3.850, 20.49...

根据正则表达式选择列

以上的辅助函数都是使用精确的模式匹配。 如果你有列名模式并不精确相同,你可以在matches()中使用任何正则表达式。下面的示例代码将添加任何包含“o”的列,后跟一个或多个其他字母,以及“er”。

#selecting based on regexmsleep %>%
  select(matches("o.+er")) %>%
  glimpse## Observations: 83## Variables: 2## $ order        <chr> "Carnivora", "Primates", "Rodentia", "Soricomorph...
## $ conservation <chr> "lc", NA, "nt", "lc", "domesticated", NA, "vu", N...

根据预先确定的列名选择列

还有另一个选项可以避免连续重新输入列名:one_of()。 您可以预先设置列名,然后在select()语句中通过将它们包装在one_of()中或使用!!运算符来引用它们。

classification <- c("name", "genus", "vore", "order", "conservation")

msleep %>%
  select(!!classification)## # A tibble: 83 x 5##    name                       genus       vore  order        conservation##    <chr>                      <chr>       <chr> <chr>        <chr>       ##  1 Cheetah                    Acinonyx    carni Carnivora    lc          ##  2 Owl monkey                 Aotus       omni  Primates     <NA>        ##  3 Mountain beaver            Aplodontia  herbi Rodentia     nt          ##  4 Greater short-tailed shrew Blarina     omni  Soricomorpha lc          ##  5 Cow                        Bos         herbi Artiodactyla domesticated##  6 Three-toed sloth           Bradypus    herbi Pilosa       <NA>        ##  7 Northern fur seal          Callorhinus carni Carnivora    vu          ##  8 Vesper mouse               Calomys     <NA>  Rodentia     <NA>        ##  9 Dog                        Canis       carni Carnivora    domesticated## 10 Roe deer                   Capreolus   herbi Artiodactyla lc          ## # ... with 73 more rows

根据数据类型选择列

select_if函数允许您传递返回逻辑语句的函数。 例如,您可以使用select_if(is.character)选择所有字符串列。 同样,你可以添加is.numericis.integeris.doubleis.logicalis.factor。如果你有日期列,你可以加载lubridate包,并使用is.POSIXtis.Date

msleep %>%
  select_if(is.numeric) %>%
  glimpse## Observations: 83## Variables: 6## $ sleep_total <dbl> 12.1, 17.0, 14.4, 14.9, 4.0, 14.4, 8.7, 7.0, 10.1,...## $ sleep_rem   <dbl> NA, 1.8, 2.4, 2.3, 0.7, 2.2, 1.4, NA, 2.9, NA, 0.6...## $ sleep_cycle <dbl> NA, NA, NA, 0.1333333, 0.6666667, 0.7666667, 0.383...## $ awake       <dbl> 11.9, 7.0, 9.6, 9.1, 20.0, 9.6, 15.3, 17.0, 13.9, ...## $ brainwt     <dbl> NA, 0.01550, NA, 0.00029, 0.42300, NA, NA, NA, 0.0...## $ bodywt      <dbl> 50.000, 0.480, 1.350, 0.019, 600.000, 3.850, 20.49...

您也可以选择否定,但在这种情况下,您需要添加波形符以确保仍将函数传递给select_if。 select_all / if / at函数需要将函数作为参数传递。 如果你必须添加任何否定或参数,你必须将你的函数包装在funs()中,或者在重新创建函数之前添加波形符。

msleep %>%
  select_if(~!is.numeric(.)) %>%
  glimpse## Observations: 83## Variables: 5## $ name         <chr> "Cheetah", "Owl monkey", "Mountain beaver", "Grea...
## $ genus        <chr> "Acinonyx", "Aotus", "Aplodontia", "Blarina", "Bo...## $ vore         <chr> "carni", "omni", "herbi", "omni", "herbi", "herbi...
## $ order        <chr> "Carnivora", "Primates", "Rodentia", "Soricomorph...## $ conservation <chr> "lc", NA, "nt", "lc", "domesticated", NA, "vu", N...

按逻辑表达式选择列

实际上,select_if允许您根据任何逻辑函数进行选择,而不仅仅基于数据类型。 例如,可以选择平均值大于500的所有列。 为避免错误,您还必须仅选择数字列,您可以提前执行此操作以获得更简单的语法,也可以在同一行中执行。类似地,'mean> 500本身不是一个函数,所以你需要先添加一个代字号,或者将它包装在funs()`中以将语句转换为函数。

msleep %>%
  select_if(is.numeric) %>%
  select_if(~mean(., na.rm=TRUE) > 10)

或者更简便:

msleep %>%
  select_if(~is.numeric(.) & mean(., na.rm=TRUE) > 10)## # A tibble: 83 x 3##    sleep_total awake   bodywt##          <dbl> <dbl>    <dbl>##  1       12.1  11.9   50.0   ##  2       17.0   7.00   0.480 ##  3       14.4   9.60   1.35  ##  4       14.9   9.10   0.0190##  5        4.00 20.0  600     ##  6       14.4   9.60   3.85  ##  7        8.70 15.3   20.5   ##  8        7.00 17.0    0.0450##  9       10.1  13.9   14.0   ## 10        3.00 21.0   14.8   ## # ... with 73 more rows

select_if的另一个有用功能是n_distinct(),它计算可以在列中找到的不同值的数量。例如,要返回少于10个不同答案的列,请在select_if语句中传递~n_distinct(。)<10。 鉴于n_distinct(。)<10不是函数,你需要在前面放一个波浪号。

msleep %>%
  select_if(~n_distinct(.) < 10)## # A tibble: 83 x 2##    vore  conservation##    <chr> <chr>       ##  1 carni lc          ##  2 omni  <NA>        ##  3 herbi nt          ##  4 omni  lc          ##  5 herbi domesticated##  6 herbi <NA>        ##  7 carni vu          ##  8 <NA>  <NA>        ##  9 carni domesticated## 10 herbi lc          ## # ... with 73 more rows

对列重新排序

您可以使用select()函数(见下文)重新排序列。 您选择它们的顺序将决定最终的顺序。

msleep %>%
  select(conservation, sleep_total, name) %>%
  glimpse## Observations: 83## Variables: 3## $ conservation <chr> "lc", NA, "nt", "lc", "domesticated", NA, "vu", N...## $ sleep_total  <dbl> 12.1, 17.0, 14.4, 14.9, 4.0, 14.4, 8.7, 7.0, 10.1...## $ name         <chr> "Cheetah", "Owl monkey", "Mountain beaver", "Grea...

如果你只是想将几列移到前面,你可以在之后使用everything()这将简便地添加所有剩余的列。

msleep %>%
  select(conservation, sleep_total, everything()) %>%
  glimpse## Observations: 83## Variables: 11## $ conservation <chr> "lc", NA, "nt", "lc", "domesticated", NA, "vu", N...## $ sleep_total  <dbl> 12.1, 17.0, 14.4, 14.9, 4.0, 14.4, 8.7, 7.0, 10.1...## $ name         <chr> "Cheetah", "Owl monkey", "Mountain beaver", "Grea...
## $ genus        <chr> "Acinonyx", "Aotus", "Aplodontia", "Blarina", "Bo...## $ vore         <chr> "carni", "omni", "herbi", "omni", "herbi", "herbi...
## $ order        <chr> "Carnivora", "Primates", "Rodentia", "Soricomorph...## $ sleep_rem    <dbl> NA, 1.8, 2.4, 2.3, 0.7, 2.2, 1.4, NA, 2.9, NA, 0....## $ sleep_cycle  <dbl> NA, NA, NA, 0.1333333, 0.6666667, 0.7666667, 0.38...## $ awake        <dbl> 11.9, 7.0, 9.6, 9.1, 20.0, 9.6, 15.3, 17.0, 13.9,...## $ brainwt      <dbl> NA, 0.01550, NA, 0.00029, 0.42300, NA, NA, NA, 0....## $ bodywt       <dbl> 50.000, 0.480, 1.350, 0.019, 600.000, 3.850, 20.4...

列名

有时候列名称本身需要进行更改:

重命名列

如果您将使用select()语句,则可以在select函数中直接重命名。

msleep %>%
  select(animal = name, sleep_total, extinction_threat = conservation) %>%
  glimpse## Observations: 83## Variables: 3## $ animal            <chr> "Cheetah", "Owl monkey", "Mountain beaver", ...## $ sleep_total       <dbl> 12.1, 17.0, 14.4, 14.9, 4.0, 14.4, 8.7, 7.0,...## $ extinction_threat <chr> "lc", NA, "nt", "lc", "domesticated", NA, "v...

如果要保留所有列,因此不能使用select()语句,可以通过添加rename()语句来重命名。

msleep %>% 
  rename(animal = name, extinction_threat = conservation) %>%
  glimpse## Observations: 83## Variables: 11## $ animal            <chr> "Cheetah", "Owl monkey", "Mountain beaver", ...## $ genus             <chr> "Acinonyx", "Aotus", "Aplodontia", "Blarina"...## $ vore              <chr> "carni", "omni", "herbi", "omni", "herbi", "...
## $ order             <chr> "Carnivora", "Primates", "Rodentia", "Sorico...## $ extinction_threat <chr> "lc", NA, "nt", "lc", "domesticated", NA, "v...
## $ sleep_total       <dbl> 12.1, 17.0, 14.4, 14.9, 4.0, 14.4, 8.7, 7.0,...
## $ sleep_rem         <dbl> NA, 1.8, 2.4, 2.3, 0.7, 2.2, 1.4, NA, 2.9, N...
## $ sleep_cycle       <dbl> NA, NA, NA, 0.1333333, 0.6666667, 0.7666667,...
## $ awake             <dbl> 11.9, 7.0, 9.6, 9.1, 20.0, 9.6, 15.3, 17.0, ...
## $ brainwt           <dbl> NA, 0.01550, NA, 0.00029, 0.42300, NA, NA, N...
## $ bodywt            <dbl> 50.000, 0.480, 1.350, 0.019, 600.000, 3.850,...

格式化所有列名

select_all()函数允许更改所有列,并将函数作为参数。如果想以大写形式获取所有列名,可以使用toupper(),同样可以使用小写tolower()

msleep %>%
  select_all(toupper)## # A tibble: 83 x 11##    NAME   GENUS VORE  ORDER CONSERVATION SLEEP_TOTAL SLEEP_REM SLEEP_CYCLE##    <chr>  <chr> <chr> <chr> <chr>              <dbl>     <dbl>       <dbl>##  1 Cheet~ Acin~ carni Carn~ lc                 12.1     NA          NA    ##  2 Owl m~ Aotus omni  Prim~ <NA>               17.0      1.80       NA    ##  3 Mount~ Aplo~ herbi Rode~ nt                 14.4      2.40       NA    ##  4 Great~ Blar~ omni  Sori~ lc                 14.9      2.30        0.133##  5 Cow    Bos   herbi Arti~ domesticated        4.00     0.700       0.667##  6 Three~ Brad~ herbi Pilo~ <NA>               14.4      2.20        0.767##  7 North~ Call~ carni Carn~ vu                  8.70     1.40        0.383##  8 Vespe~ Calo~ <NA>  Rode~ <NA>                7.00    NA          NA    ##  9 Dog    Canis carni Carn~ domesticated       10.1      2.90        0.333## 10 Roe d~ Capr~ herbi Arti~ lc                  3.00    NA          NA    ## # ... with 73 more rows, and 3 more variables: AWAKE <dbl>, BRAINWT <dbl>,## #   BODYWT <dbl>

你可以通过动态创建函数来进一步:如果你有来自excel杂乱的列名,你可以用下划线替换所有的空格。

#making an unclean database:msleep2 <- select(msleep, name, sleep_total, brainwt)
colnames(msleep2) <- c("name", "sleep total", "brain weight")

msleep2 %>%
  select_all(~str_replace(., " ", "_"))## # A tibble: 83 x 3##    name                       sleep_total brain_weight##    <chr>                            <dbl>        <dbl>##  1 Cheetah                          12.1     NA       ##  2 Owl monkey                       17.0      0.0155  ##  3 Mountain beaver                  14.4     NA       ##  4 Greater short-tailed shrew       14.9      0.000290##  5 Cow                               4.00     0.423   ##  6 Three-toed sloth                 14.4     NA       ##  7 Northern fur seal                 8.70    NA       ##  8 Vesper mouse                      7.00    NA       ##  9 Dog                              10.1      0.0700  ## 10 Roe deer                          3.00     0.0982  ## # ... with 73 more rows

或者,如果您的列包含其他数据,例如问题编号:

#making an unclean database:msleep2 <- select(msleep, name, sleep_total, brainwt)
colnames(msleep2) <- c("Q1 name", "Q2 sleep total", "Q3 brain weight")
msleep2[1:3,]## # A tibble: 3 x 3##   `Q1 name`       `Q2 sleep total` `Q3 brain weight`##   <chr>                      <dbl>             <dbl>## 1 Cheetah                     12.1           NA     ## 2 Owl monkey                  17.0            0.0155## 3 Mountain beaver             14.4           NA

您可以将select_allstr_replace结合使用以消除额外的字符。

msleep2 %>%
  select_all(~str_replace(., "Q[0-9]+", "")) %>% 
  select_all(~str_replace(., " ", "_"))      

## # A tibble: 83 x 3##    `_name`                    `_sleep total` `_brain weight`##    <chr>                               <dbl>           <dbl>##  1 Cheetah                             12.1        NA       ##  2 Owl monkey                          17.0         0.0155  ##  3 Mountain beaver                     14.4        NA       ##  4 Greater short-tailed shrew          14.9         0.000290##  5 Cow                                  4.00        0.423   ##  6 Three-toed sloth                    14.4        NA       ##  7 Northern fur seal                    8.70       NA       ##  8 Vesper mouse                         7.00       NA       ##  9 Dog                                 10.1         0.0700  ## 10 Roe deer                             3.00        0.0982  ## # ... with 73 more rows

行名转换成列

某些数据框的行名本身有意义,例如mtcars数据集:

 mtcars %>%   head##                    mpg cyl disp  hp drat    wt  qsec vs am gear carb## Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
## Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
## Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
## Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
## Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
## Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1

如果希望此列成为实际列,则可以使用rownames_to_column()函数,并指定新列名。

 mtcars %>%   tibble::rownames_to_column("car_model") %>%   head##           car_model  mpg cyl disp  hp drat    wt  qsec vs am gear carb## 1         Mazda RX4 21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
## 2     Mazda RX4 Wag 21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
## 3        Datsun 710 22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
## 4    Hornet 4 Drive 21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
## 5 Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
## 6           Valiant 18.1   6  225 105 2.76 3.460 20.22  1  0    3    1



作者:夜神moon
链接:https://www.jianshu.com/p/67d4f8104696

打开App,阅读手记
0人推荐
发表评论
随时随地看视频慕课网APP