继续浏览精彩内容
慕课网APP
程序员的梦工厂
打开
继续
感谢您的支持,我会继续努力的
赞赏金额会直接到老师账户
将二维码发送给自己后长按识别
微信支付
支付宝支付

union/find--不相交集合

温安适
关注TA
已关注
手记 10
粉丝 17
获赞 111
前言

大家好,今天提供不相交集合的笔记(即union/find).
不相交集合有实现简单,证明困难的特点,若有想证明的可以自行查阅相关文献。我就不做赘述啦!

用途

不相交集类解决动态等价类问题,即:

  1. 查找find一个元素属于哪个等价类
  2. 合并union 两个等价类为一个新的等价类。
    也就是常说的union/find算法
基本概念介绍
等价类定义
  1. 一个元素a属于S的等价类是S的一个子集合,它包含所有与a有等价关系的元素。
  2. 等价类对S进行划分:S中的每一个成员恰好出现在一个等级类中。
等价关系定义
  1. 自反性 a属于S,aRa (R代表关系)
  2. 对称性 aRb,bRa
  3. 传递性 aRb,bRc则 aRc
举例
  1. “>”号不是等价关系,没有对称性
  2. 电器连通性是等价关系
基本数据结构

数据结构需要良好支持union和find操作,union操作相对简单,我们关注find操作。

find操作的特点及分析

find操作只要求当且仅当两个元素属于同一个集合时,作用在这两个元素上的find返回相同的集合名称。
由此自然想到
因为树的每一个元素都有相同的根,所以等价类可以用树表示,不相交集则以森林表示。树的根存储集合名称
依照上述假设:
find操作实质从指定节点向上找到根,所以只需要保存父链

可行数据结构(非唯一)

由于只需保存父链,不相交集类(森林)中的等价类(树)可以被非显示的存储在数组中,数组中元素有如下约定:

  1. 数组中每个成员s[i]表示元素i的父亲,
  2. 如果i是根,那么s[i]=-1.
图示说明

下图是隐示的森林示意图,上边是隐示森林数组,下边是依据该数组展现实际的森林。
隐示的森林示意图

按秩求并
为什么要使用?

任意合并会出现过深的树,所以采用按秩求并,它保证树的深度不超过O(logN)

如何实现?
  1. 初始时为-1,
  2. 仅当两颗相等深度的树求并时秩才增加;增加秩的操作实际为当前值-1
代码示意
/**
 * 采用按秩求并
 * @param root1 不相交集合1的根
 * @param root2 不相交集合2的根
 */
public void union(int root1, int root2) {
    if(s[root2]<s[root1]){
        s[root1]=root2;
    }else{
      if(s[root1]==s[root2]){
        s[root1]--;
      }
        s[root2]=root1;
    }
}
图例说明

按秩求并

路径压缩
为什么要使用?

不进行路径压缩,M次操作,容易出现最差情况O(MlogN),其中N为节点个数

如何实现?
  1. 路径压缩用于find与union无关
  2. 设操作find(x),此时路径压缩的效果是:
    从x到根的路径上的每个节点都使其父节点为该树的根
代码示意
/**
  * 查找方式 :路径压缩
  * @param x 要寻找的元素
  * @return x属于的集合
  */
public int find(int x) {
    if (s[x] < 0) {
        return x;
    } else {
        return s[x] = find(s[x]);
    }
}
图例说明

路径压缩

理论界限

M次union和find的运行时间为:

O(Mlog*N)
写在最后

什么你觉得太简单了,建议你试着证明!
什么代码没有难度,可以实现各迷宫试试啊!

相关代码地址

完整代码地址:https://github.com/floor07/DataStructuresAndAlgorithm/blob/master/src/main/java/chapter8/DisjSets.java

参考他人实现编写的迷宫:https://github.com/floor07/DataStructuresAndAlgorithm/blob/master/src/main/java/chapter8/Maze.java

打开App,阅读手记
0人推荐
发表评论
随时随地看视频慕课网APP